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Avalanche dynamics and related power-law statistics are ubiquitous in nature, arising in phenomena such as
earthquakes, forest fires, and solar flares. Very interestingly, an analogous behavior is associated with many
condensed-matter systems, such as ferromagnets and martensites. Bearing it in mind, we study the prototypical
random-field Ising model at T=0. We find a finite correlation between waiting intervals and the previous
avalanche size. This correlation is not found in other models for avalanches but it is experimentally found in
earthquakes and in forest fires. Our study suggests that this effect occurs in critical points that are at the end of
a first-order discontinuity separating two regimes: one with high activity from another with low activity.

DOI: 10.1103/PhysRevE.80.011105 PACS number�s�: 05.70.Jk, 05.40.�a, 75.40.Mg, 75.60.Ej

In the last few years much experimental and theoretical
effort has been devoted to the study of avalanche processes.
Deep understanding of the statistical correlations in such sto-
chastic processes is needed in order to make advances to-
ward predictability. The importance of the subject is beyond
discussion due to the many implications in natural disasters
and social crises. Avalanche processes are characterized by
extremely fast events whose occurrences are separated by
waiting intervals without activity. The magnitudes character-
izing avalanches �energy, size, and duration� are, in most
cases, statistically distributed according to a power law
p�s�ds�s−�ds characterized by a critical exponent �: ex-
tremely large events hardly occur, whereas small events are
very common. This is the famous Gutenberg-Richter law for
earthquakes. Power-law distributions have been found not
only for other large-scale natural phenomena ranging from
solar flares �1� to forest fires �2� but also in laboratories,
associated with many condensed-matter systems: condensa-
tion �3�, ferromagnets �4�, martensitic transitions �5�, super-
conductivity �6�, etc. Although many statistical-mechanics
models have focused on the study of first-passage times �7�
in order to characterize metastable states, statistics of waiting
intervals between avalanches � are not often studied, espe-
cially in condensed matter. The distribution p���d� has been
described by different laws including exponentials and also
power laws. For solar flare statistics and earthquake models,
it has been found �8,9� that the unavoidable threshold defi-
nition �separating activity from inactivity� alters the distribu-
tion p���, and that this thresholding effect is a signature of
the existence of correlations �10,11�. Direct measurement of
the correlations between waiting intervals and avalanche
sizes has been obtained by measuring the conditional distri-
butions pprev���s�s0� and pnext���s��s0�. These are the prob-
abilities of having a waiting interval �, given that the previ-
ous �s� or the next �s�� avalanche is larger than s0. For
earthquake and forest-fire statistics, while pnext has been
found to be independent of s0, pprev does exhibit significant
changes when varying s0 �12,13�.

In this paper we study some statistical correlations for the

three-dimensional random-field Ising model �RFIM� at T=0
with metastable dynamics based on the local relaxation of
single spins. This model was introduced �14� for the study of
Barkhausen noise in ferromagnets �4� and acoustic emission
in martensitic transitions �5�, and has been used as a proto-
type for the study of crackling noise and other avalanche
phenomena �15,16�. The model is defined on a cubic lattice
with size N=L3. At each lattice site there is a spin variable
Si= �1 �i=1, . . . ,N� that interacts with its nearest neighbors
�nn� according to the Hamiltonian:

H = − �
nn

SiSj − �
i=1

N

Sihi − H�
i=1

N

Si. �1�

The local random fields hi are Gaussian distributed with zero
mean and standard deviation �. This parameter not only al-
lows the critical behavior ��=�c�2.21�0.01� to be studied
but also subcritical ����c� and supercritical ����c� re-
gimes �17,18�. This tuning is absent in the so-called self-
organized criticality �SOC� models such as the original Bak-
Tang-Wiesenfeld �BTW� model �19�, in which the critical
state is reached after waiting for a certain time without any
parameter adjustment. In the RFIM, the time variable is re-
placed by the external field H, which is adiabatically in-
creased from −� to �. The system responds by increasing
the order parameter m	�i=1

N Si /N �magnetization per spin�
from −1 to 1. The spins flip according to the dynamical rule
Si=sign�� jSj +hi+H� �the first sum runs over the nn of spin
Si�, which corresponds to a minimization of the local energy.
This nonequilibrium dynamics leads to hysteresis and ava-
lanches when many spins flip at constant field. The ava-
lanche size s is defined as the number of spins flipped until a
new stable state is reached. Avalanches are separated by field
waiting intervals � without activity. When �=�c and H is
close to Hc�1.43�0.05 �17,20�, the avalanche size distri-
bution becomes approximately a power law p�s��s−� �with
��1.6 �17��. The properties of large �percolating� ava-
lanches at the critical point have been previously discussed
�20�. Critical avalanches have been found to be fractal so that

s�c�Ldf with df �2.88. When ���c, the avalanche distri-
bution is exponentially damped, i.e., all avalanches are neg-
ligible compared to system size, and the magnetization m*eduard@ecm.ub.es
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evolves continuously when the system is infinite. For �
��c, avalanches are also infinitesimally small compared to
L3 except for a unique infinitely large and compact �s�L3�
avalanche corresponding to a first-order phase transition be-
tween a phase with low m and a phase with high m. The
first-order transition line can be linearly approximated by the
equation Ht���=Hc�1−B���−�c� /�c� with B�=0.25 �20�.

In this work we will concentrate on the analysis of the
field waiting intervals �, and their correlation with the pre-
vious and next avalanche sizes. We have first checked that
intervals are exponentially distributed. Figure 1 shows the
distribution of waiting intervals for �=2.21, L=30, and three
different H ranges. One can observe that before and after the
transition region the distributions are very well described by
exponentials �continuous lines�, whereas in the transition re-
gion the distribution becomes a linear mixture of exponen-
tials. The mean value 
��, which is the only parameter char-
acterizing such distributions, depends on � and H, and below
�c it exhibits a discontinuity 	� when H increases and
crosses the first-order transition line from the region of high
activity �small 
��� to the region of low activity �large 
���,
as shown in the inset of Fig. 1. We can, therefore, compare
the behavior of the discontinuity 	� to that of an order pa-
rameter. Note that, given the finite size of the system, the
pseudocritical point where the mixture of exponentials be-
comes a single exponential distribution will be located at �
�2.21. For this reason, although data in Fig. 1 correspond to
�c, one can still observe a range of fields with the two-peak
distribution.

Besides the histogram analysis, we have numerically
checked that, for all � and H, 
����
�2�− 
��2,�21� which is
more evidence of the exponential character of p���. The con-

tinuous line in the inset of Fig. 1 shows this agreement ex-
cept for some deviations close to the transition line due to
finite-size effects.

For the following discussions it is interesting to analyze
the finite-size dependence of 
��. A simple argument can be
used to state that far from the critical point, since the corre-
lation length is finite, the probability for an avalanche to start
when the field is increased by dH is proportional to the num-
ber of triggering sites and thus to L3. This implies that 
��
�L−3. Figure 2 shows examples of this behavior for different
values of � and H. At criticality, the correlation length di-
verges and the triggering argument may be too naive. Nev-
ertheless, as shown in Fig. 2, numerical simulations indicate
that the exponent is always very close to three. Uncertainties
in Hc and �c do not allow for an accurate enough finite-size
scaling analysis to determine small variations. For the dis-
cussions here the exact value of this exponent is not needed
and we will assume that 
���L−z with z�3.

Let us now focus on the study of correlations and consider
a sequence of two avalanches, the first with size s, then a
waiting interval �, and the next avalanche with size s�. We
define the following two correlation functions:


s,� =

s�� − 
s�
��

�
s2� − 
s�2�
�2� − 
��2
, �2�


�,s� =

s��� − 
s��
��

�
s�2� − 
s��2�
�2� − 
��2
. �3�

Figure 3 shows examples of the behavior of the correlation
functions for different system sizes and �=�c�2.21 as a
function of the scaling variable v= ���H−Hc� /Hc�L1/� that
measures the distance to the critical point. The exponent �
=1.5 has been taken from the literature �20�.

For the understanding of the behavior of the correlation
functions for increasing system size, one must first discuss
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FIG. 1. �Color online� Log-log plot of the histograms corre-
sponding to the distribution of waiting intervals � for L=30, �
=2.21, and three different field ranges, indicated by the legend.
Note that the horizontal scale is in dB and that the vertical scale
represents the probability pk of � belonging to the logarithmic bin
�10k/20, 10�k+1�/20�. The dashed lines show fits corresponding to the
exact exponential behavior. Data have been obtained by averaging
over 50 000 realizations of disorder. The inset shows the behavior
of 
�� �symbols� and �
�2�− 
��2 �continuous line� as a function of
H for �=1.95 and L=30.
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FIG. 2. �Color online� Log-log plot of the average waiting in-
terval 
�� as a function of the system size L for different values of
� and H as indicated by the legend. The continuous line shows the
behavior L−3 and the discontinuous lines are fits to the last two to
three points for each series of data. Data are averaged over 50 000
disorder realizations. The inset shows the behavior of �
s2�− 
s�2 for
the values of � and H indicated. The continuous lines show the
behavior Ldf �above� and L3/2 �below�.
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what the expected behavior of a generic correlation function

�H ,�=�c ,L� close to Hc is likely to be. It should be borne
in mind that correlations are, by definition, bounded between
−1 and 1. Therefore no critical divergences can occur with
increasing L. Consequently, any critical correlation either
goes to zero or tends to a constant value. In this second case,
it should exhibit scaling behavior 
�H ,�c ,L�� 
̂��c ,v�.

The first observation from Fig. 3 is that 
�,s� is much
smaller than 
s,� not only at the critical point �v=0� but also
for other values of the field. In addition, the peak in 
�,s�
seems to show a systematic decrease in absolute value with
increasing system size. Our data �for sizes up to L=36� seem
to be consistent with a vanishing 
�,s� in the thermodynamic
limit.

The second important observation is that correlation be-
tween an avalanche size and the next waiting time 
s,� ex-
hibits a constant value �0.4 at the critical point. The overlap
of the curves is rather good, especially if one takes into ac-
count the fact that even at the critical point there are non-
critical avalanches that may slightly perturb the scaling func-
tion behavior. The fact that the scaling function in Fig. 3�a�
goes to zero for v→ �� indicates that the finite correlation
only survives exactly at the critical point but vanishes for
fields both above and below. We would like to note that the
result of a finite correlation 
s,� is not in contradiction with
the Poissonian character for the triggering instants of the
avalanches.

A second way to go deeper into the understanding of the
nature of the correlations is the direct measurement of the
conditional distribution of intervals pprev���s�s0� and
pnext���s��s0�. Figure 4 shows, as an example, the depen-
dence of these two distributions for L=30, �=2.21, and
1.40�H�1.45. The distribution pprev���s�s0� clearly ex-
hibits a dependence on the previous avalanche size, whereas
pnext���s��s0� is independent of s0. Thus, the larger the size
of an avalanche, the larger the probability that the following
waiting interval is large. We should note at this point that a
similar causal dependence has been found for the statistics of

earthquakes and forest fires �12,13� but with a different sign.
The larger the size of an earthquake, the smaller the waiting
time to the next event.

The origin of such correlations in our RFIM can be un-
derstood by noting that, for a finite system below �c, after an
avalanche with a large size �of the order of L3�, one can
“guess” that the system has jumped to the low-activity region
and, therefore, one can “predict” that the next interval � will
be large. We can provide an heuristic argument of why such
finite-size correlations vanish in the thermodynamic limit ev-
erywhere except at the critical point. Let us analyze the be-
havior of the numerator and the two square roots in the de-
nominator in Eq. �2�. First note that, given the fact that p���
is exponential, the fluctuations of �
�2�− 
��2 behave as
��L−z. The fluctuations of s behave differently below �c
and at �c. If we consider an interval 	H that crosses the
first-order transition region, below �c we will have a number
of avalanches proportional to L3 contributing to the averages.
Among these, most will display a small size �L0 but one
will have a size �L3. When computing 
s� we get a 
s�
�L0 behavior but when computing �
s2�− 
s�2 we will get
L3/2, as shown in the inset of Fig. 2 for �=1.95 and the
interval 1.465�H�1.470 crossing the transition line. Ex-
actly at criticality, the distribution of avalanches becomes a
power law. This means that the averages 
s� and 
s2� should
be computed by integrating the distribution from one to the
largest avalanche size that has a fractal dimension smax
�Ldf �20�. By integration, one trivially gets 
s��Ldf and

s2��L2df. The fluctuations therefore will go as �
s2�− 
s�2

�Ldf, as shown in the inset of Fig. 2.
To study the numerator in Eq. �2� one should note that


s��− 
s�
��= 
s����− 
s��
��= 
s����−���. This average mea-
sures the avalanches that carry an associated change in �. For
���c, among the set of L3 avalanches in an interval of 	H,
there is one avalanche with size of L3 associated with a
change 	��L−z. The rest of the avalanches have a size of L0

and carry no change in �. Therefore the numerator in Eq. �2�
goes as L−z and consequently, below �c, 
s,��L−z / �L3/2L−z�
�L−3/2→0.
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FIG. 3. �Color online� Correlation functions defined by Eqs. �2�
and �3� as functions of the scaling variable for �=2.21 and different
system sizes as indicated by the legend. Data correspond to aver-
ages over 50 000 disorder realizations and field intervals with size
	H=0.005. Note the different vertical scale in the two figures.
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For �=�c the behavior of the numerator in Eq. �2� is
much more intricate since different kinds of critical ava-
lanches exist close to the critical point. Apart from a number
of noncritical avalanches, there is an infinite number ��L��
of spanning avalanches and another infinite number �L�nsc

of critical nonspanning avalanches. It is difficult to argue
which of these avalanches have an associated 	�. We cannot
provide a definite argument but, at least, the product 
s�
��
�appearing in the numerator of Eq. �2�� behaves as LdfL−z.
Therefore it is plausible that at �c, 
s,��Ldf−z / �LdfL−z��1,
which justifies the finite value of the correlation 
s,� found
numerically, as shown in Fig. 3.

In order to compare with the avalanche models based on
SOC, we have performed an analysis of the same probability
densities and correlations for the two-dimensional BTW
model. In this case, the waiting times are discrete since they
are identified with the number of grains added before a new
avalanche starts. For large enough systems, these waiting
intervals are distributed according to the geometric distribu-
tion, which is the discrete version of the exponential distri-
bution, and all two correlation functions �2� and �3� clearly
vanish.

In summary, we have numerically studied the T=0 RFIM
with metastable dynamics as a prototype for avalanche pro-

cesses in condensed-matter systems that display an underly-
ing first-order phase transition. The sequence of avalanches
and waiting times can be considered as a compound Poisson
process. Waiting intervals tend to be exponentially distrib-
uted and characterized by their average value 
��. The prod-
uct Lz
�� is finite in the thermodynamic limit and exhibits a
discontinuity at the first-order transition line. Correlations
between the avalanche size and the next waiting time vanish
everywhere in the thermodynamic limit except at the critical
point. Such a causal correlation 
s,��0 has been found ex-
perimentally in earthquakes and forest fires although with a
different sign. This sign difference could easily be explained
by considering a discontinuity Lz	��0. An experimental
challenge for the future is to look for these effects in labora-
tory experiments on condensed-matter systems exhibiting
avalanches �Barkhausen noise, acoustic emission in marten-
sites, etc�.
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